Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Sheet 3

due Wednesday, November 8th, 2017

die zugehörigen δ_i -Ketten; man bezeichne mit Z_i die aus den Punkten von (3) gebildete Punktmenge; da R kompakt ist, so kann man aus der Folge $Z_1, Z_2, \ldots, Z_i, \ldots$ eine konvergente Teilfolge wählen 5), deren topologischer Limes C ein Kontinuum ist 6), welches die beiden Punkte a und b enthält und von der Menge $F_1 + F_2$ eine positive Entfernung $\geqslant a$ hat. C genügt somit allen Forderungen unseres Satzes.

Korollar. Es sei R ein Raum mit verschwindender erster Brouwerscher Zahl und C eine abgeschlossene Teilmenge von R, welche die Punkte a und b voneinander trennt⁷), ohne dass es eine abgeschlossene echte Teilmenge von C mit dieser Eigenschaft gibt; dann ist C ein Kontinuum.

Der Beweis dieser Tatsache ist wörtlich derselbe, wie im Falle, wo R der R^n ist⁸): es genügt zu zeigen, dass die erwähnte Trennungseigenschaft im Brouwerschen Sinne induktiv ist (was aus der Kompaktheit von R in der üblichen Weise folgt), und dann den Phragmén-Brouwerschen Satz anzuwenden.

PAUL URYSOHN and PAUL ALEXANDROFF

Ueber Räume mit verschwindender erster Brouwerscher Zahl.

Akademie van Wetenschappen, Proceedings, vol. 31 (1928), pp. 808-810, 1928.

(Notice that Urysohn drowned while swimming with Alexandroff in 1924)

Can you find an earlier occurance of "by the usual compactness argument"?

https://mathoverflow.net/q/143569/39495

Exercise 10 (Alternative definition of Hausdorff)

Show that a space X is hausdorff if and only if the *diagonal*

$$\Delta(X) := \{(x, x) \in X \times X | x \in X\}$$

is closed in the product topology of $X \times X$.

Exercise 11 (Line with double zero)

Let $X := \mathbb{R} \times \{0,1\}$ with the Euclidean topology and let $Y := X/\sim$ be the quotient space by

$$(x,0) \sim (y,1) \Leftrightarrow x = y \neq 0.$$

The quotient map $f \colon X \to Y$ provides Y with a topology by $U \subset Y$ is open if and only if $f^{-1}(U)$ is open in X.

- 1. Consider the points $(0,0), (0,1) \in Y$. Show that Y is not hausdorff.
- 2. Consider the set $A:=[-1,1]\times\{0\}\subset X$. Show that it is compact. Show that f(A) is compact. Show that f(A) is not closed.

Thus we have seen that a compact set needs not to be closed.

Exercise 12 (Connectivity of intervals)

- 1. Show that the real interval [0,1] with the usual topology is connected. (Do not use the implication "path-connected \Rightarrow connected")
- 2. Is the interval $[0,1] \cap \mathbb{Q}$ connected?

Exercise 13 (Local connectedness)

Let X be a topological space. We call a space X to be "locally connected at $x \in X$ ", if for every open subset V with $x \in V$, there is a connected open subset $U \subset X$ such that $x \in U$. We call a space "locally connected" if it is locally connected at x for all $x \in X$.

- 1. Find examples of spaces, that are locally connected but not connected.
- 2. Find examples of spaces, that are connected but not locally connected.

Consider the equivalence relation

$$x \sim y \Leftrightarrow$$
 there is a connected subset of X with $x, y \in X$.

The equivalence classes with this equivalence relations are called "connected components" of X.

- 3. Show that the connected components of X are closed.
- 4. Show that if X is locally connected, then the connected components of X are open.
- 5. Show that a compact locally connected space has only finitely many components.