Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Sheet 4 due Wednesday, November 15th, 2017

Exercise 14 (Flat tire)
Consider the torus $T=S^{1} \times S^{1}$ with the point $((-1,0),(-1,0))$ removed

$$
X:=S^{1} \times S^{1} \backslash\{((-1,0),(-1,0))\} .
$$

This space is called a punctured torus. Now consider the subspace $Y \subset X$,

$$
Y:=S^{1} \times\{(0,1)\} \cup\{(1,0)\} \times S^{1} .
$$

Show that Y is a deformation retract of X.

Exercise 15 (Homotopic to a constant map)
Given a continous map $f: S^{n} \rightarrow X$, from the n-dimensional sphere to a space X, show that the following statements are equivalent.
(a) f is homotopic to a constant map.
(b) There is continous map $g: D^{n+1} \rightarrow X$, such that $g_{S^{n}}=f$, where we identify S^{n} as a subset of the $n+1$-dimensional closed ball D^{n+1}.
(c) There is continous map $h: S^{n+1} \rightarrow X$, such that $h_{S^{n}}=f$, where we identify S^{n} as a subset (equator) of the $n+1$-dimensional sphere S^{d+1}.

Exercise 16 (Homotopy Extension Property)
Given a space X and a subspace $A \subset X$. We say that the pair (X, A) has the homotopy extension property if for every $F: X \rightarrow Y$ and every homotopy

$$
h: A \times[0,1] \rightarrow Y
$$

between F_{A} and some $g: A \rightarrow Y$ there is a homotopy

$$
H: X \times[0,1] \rightarrow Y
$$

which restricts to h, i.e. $H_{A \times[0,1]}=h$.
Show that the following statements are equivalent.
(a) (X, A) has the homotopy extension property.
(b) $(X \times\{0\} \cup A \times I)$ is a deformation retract of $X \times I$.

Exercise 17 (Quotient of the torus)
Consider the torus $T:=S^{1} \times S^{1}$ and consider the following equivalence relation on T :

$$
(x, y) \sim(y, x)
$$

Let X be the quotient T / \sim. Define the Möbius strip to be the space $M:=[-1,1] \times[-1,1] / \approx$, where \approx is the equivalence relation $(x, 1) \approx(-x,-1)$. Show that X is homeomorphic to M. To what subset of the torus are the diagonal elements $\{[(x, x)] \mid(x, x) \in T\} \subset X$ mapped under a homeomorphism between X and M.

