Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Exercise 22 (The Alphabet) Consider each letter of the Alphabet as a subspace of \mathbb{R}^{2}.
Which spaces are homeomorphic and which are not?
Determine the homotopy classes of letters. You may use $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$.
Exercise 23 (Cofinite Topology)
Given a set X. Proof that

$$
\mathcal{O}:=\{U \subset X| | X \backslash U \mid<\infty\}
$$

provides X with the coarsest topology, such that X is T_{1} (points are closed).
Exercise 24 (Quotient of a Quotient)
Given a topological space X and given relations $R_{1}, R_{2} \subset X \times X$.

1. Proof that the quotient map $X \rightarrow X / R_{i}$ induces a map $f_{i}: X \times X \rightarrow X / R_{i} \times X / R_{i}$ for $i=1,2$.
2. Remark that $f_{i}\left(R_{j}\right)$ defines a relation on X / R_{i} for $i, j=1,2$.
3. We define

$$
\left(X / R_{i}\right) / R_{j}:=\left(X / R_{i}\right) / f_{i}\left(R_{j}\right) .
$$

Proof that $\left(X / R_{1}\right) / R_{2} \cong\left(X / R_{2}\right) / R_{1}$.

Exercise 25 (Product of a Quotient vs Quotient of a Product)
We have seen, that two quotients commute. Proof that a product of a quotient, needs not to be a quotient, i.e. the map

$$
p \times \text { id }:=\mathbb{R}_{>0} \times \mathbb{Q} \rightarrow \mathbb{R}_{>0} / \mathbb{Z}_{>0} \times \mathbb{Q}, \quad(x, q) \mapsto([x], q)
$$

is not a quotient map:

1. Proof that is suffices to construct a set $V \subset \mathbb{R}_{>0} / \mathbb{Z}_{>0} \times \mathbb{Q}$ such that $(p \times \mathrm{id})^{-1}(U)$ is open in $\mathbb{R}_{>0} \times \mathbb{Q}$ but V is not open with respect to the product topology.
2. Show that

$$
U_{n}:=\left\{(x, y) \in\left(n-\frac{1}{4}, n+\frac{1}{4}\right) \times \mathbb{Q}, \text { such that }|x-n|<\left|y-\frac{\sqrt{2}}{n}\right|\right\} \subset \mathbb{R}_{>0} \times \mathbb{Q}
$$

is open.
3. Show that $U_{n} \cap(\{n\} \times \mathbb{Q})=\{n\} \times \mathbb{Q}$.
4. Show that $(p \times \mathrm{id})^{-1}(p \times \mathrm{id})\left(\bigcup_{i=1}^{\infty} U_{n}\right)=\bigcup_{i=1}^{\infty} U_{n}$. Conclude that it suffices to show that $V:=(p \times \mathrm{id})\left(\bigcup U_{n}\right)$ is not open.
5. Show that $([1], 0) \in U$, but $([1], 0) \notin U^{\circ}$.

