Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Sheet 7

due Wednesday, December 13th, 2017

Exercise 26 (Fundamental group of a wedge) Given spaces with base points (X, x_0) and (Y, y_0) . Their wedge

$$X \vee Y := X \times \{0\} \cup Y \times \{1\}/(x_0, 0) \sim (y_0, 1)$$

is the space obtained by taking the union and gluing together the base points. This base has a canonical base point $(x_0,0)=(y_0,1)$. Given a map $f\colon X_1\to X_2$ there is a canonical way of constructing $f\vee\operatorname{id}\colon X_1\vee Y\to X_2\vee Y$.

A different way to view $X \vee Y$ is as a subspace of the product $X \times Y$ namely as $\{(x,y) \in X \times Y | x = x_0 \vee y = y_0.$

- 1. Show that the inclusion $i \colon X \vee Y \to X \times Y$ induces a surjective map of fundamental groups. (Use the isomorphism of $\pi_1(X \times Y)$). Retracts can also be useful.)
- 2. Show explicitely that the map $\pi_1(i)$ abelisizes $\pi_1(S^1 \vee S^1)$. I.e. given an element $\pi_1(S^1 \vee \operatorname{pt})$ and one in $\pi_1(\operatorname{pt} \vee S^1)$, we include them into $\pi_1(S^1 \times S^1)$, but they might not commute $([f] \cdot [g] \neq [g] \cdot [f])$. Show that they will commute after applying $\pi_1(i)$ by constructing an explicit homotopy between $\pi_1(i)([f] \cdot [g])$ and $\pi_1(i)([g] \cdot [f])$.

Exercise 27 (Sorgenfrey line and plane) Consider the space \mathbb{R}_l consisting of the real line with the topology generated by all [a,b) being open for all $a,b \in \mathbb{R}$.

- 1. Show that the topology on \mathbb{R}_l conincides with the topology incuced by $(-\infty, a)$ and $[b, \infty)$ closed for all $a, b \in \mathbb{R}$.
- 2. Show that the subspace topology of \mathbb{R}_l on \mathbb{Q} differs from the euclidian topology.
- 3. Show that \mathbb{R}_l is totally disconnected.
- 4. Show that \mathbb{R} is normal, i.e. any two disjoint closed sets have disjoint open neighborhoods. (For this it is useful to understand the closed sets well.)
- 5. Consider $\mathbb{R}^2_l := \mathbb{R}_l \times \mathbb{R}_l$ with the product topology. Show that the antidiagonal $D := \{(x, -x) | x \in \mathbb{R}\} \subset \mathbb{R}^2_l$ is a discrete subset, i.e. the subspace topology is the discrete topology.
- 6. Show that \mathbb{R}^2_l is not normal. (Consider $D \cap \mathbb{Q}^2_l$ and $D \setminus \mathbb{Q}^2_l$.)

Exercise 28 ((Co-)Product of groups) Let G, H be groups. Then $G \times H = \{(g, h) \mid g \in G h \in H\}$ together with the multiplication

$$(g,h)\cdot(g',h')=(gg',hh')$$

is again a group.

1. Proof that $G \times H$ has the universal property of a product, i.e. for any group L with group homorphisms $g \colon L \to G$ and $h \colon L \to H$ there exists a unique group homorphism $g \times h \colon L \to G \times H$ that makes the diagram commute:

Here p_1, p_2 denote the projections.

- 2. Suppose G, H are abelian groups. Proof that $G \times H$ is also the product in the category of abelian groups (i.e. any L is required to be abelian).
- 3. Suppose G,H are abelian groups. Proof that $G\times H$ is also the coproduct or sum, i.e. for any abelian group L with group homorphisms $g\colon G\to L$ and $h\colon H\to L$ there exists a unique group homorphism $F\colon G\times H\to L$ that makes the diagram commute:

4. Suppose G,H are not necessarily abelian groups. Proof that $G\times H$ is not the coproduct in the category of groups.