Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Exercise 26 (Fundamental group of a wedge) Given spaces with base points (X, x_{0}) and (Y, y_{0}). Their wedge

$$
X \vee Y:=X \times\{0\} \cup Y \times\{1\} /\left(x_{0}, 0\right) \sim\left(y_{0}, 1\right)
$$

is the space obtained by taking the union and gluing together the base points. This base has a canonical base point $\left(x_{0}, 0\right)=\left(y_{0}, 1\right)$. Given a map $f: X_{1} \rightarrow X_{2}$ there is a canonical way of constructing $f \vee \mathrm{id}: X_{1} \vee Y \rightarrow X_{2} \vee Y$.

A different way to view $X \vee Y$ is as a subspace of the product $X \times Y$ namely as $\{(x, y) \in$ $X \times Y \mid x=x_{0} \vee y=y_{0}$.

1. Show that the inclusion $i: X \vee Y \rightarrow X \times Y$ induces a surjective map of fundamental groups. (Use the isomorphism of $\pi_{1}(X \times Y)$. Retracts can also be useful.)
2. Show explicitely that the map $\pi_{1}(i)$ abelisizes $\pi_{1}\left(S^{1} \vee S^{1}\right)$. I.e. given an element $\pi_{1}\left(S^{1} \vee \mathrm{pt}\right)$ and one in $\pi_{1}\left(\mathrm{pt} \vee S^{1}\right)$, we include them into $\pi_{1}\left(S^{1} \times S^{1}\right)$, but they might not commute $([f] \cdot[g] \neq[g] \cdot[f])$. Show that they will commute after applying $\pi_{1}(i)$ by constructing an explicit homotopy between $\pi_{1}(i)([f] \cdot[g])$ and $\pi_{1}(i)([g] \cdot[f])$.

Exercise 27 (Sorgenfrey line and plane) Consider the space \mathbb{R}_{l} consisting of the real line with the topology generated by all $[a, b)$ being open for all $a, b \in \mathbb{R}$.

1. Show that the topology on \mathbb{R}_{l} conincides with the topology incuced by $(-\infty, a)$ and $[b, \infty)$ closed for all $a, b \in \mathbb{R}$.
2. Show that the subspace topology of \mathbb{R}_{l} on \mathbb{Q} differs from the euclidian topology.
3. Show that \mathbb{R}_{l} is totally disconnected.
4. Show that \mathbb{R} is normal, i.e. any two disjoint closed sets have disjoint open neighborhoods. (For this it is useful to understand the closed sets well.)
5. Consider $\mathbb{R}_{l}^{2}:=\mathbb{R}_{l} \times \mathbb{R}_{l}$ with the product topology. Show that the antidiagonal $D:=$ $\{(x,-x) \mid x \in \mathbb{R}\} \subset \mathbb{R}_{l}^{2}$ is a discrete subset, i.e. the subspace topology is the discrete topology.
6. Show that \mathbb{R}_{l}^{2} is not normal. (Consider $D \cap \mathbb{Q}_{l}^{2}$ and $D \backslash \mathbb{Q}_{l}^{2}$.)

Exercise 28 ((Co-)Product of groups) Let G, H be groups. Then $G \times H=\{(g, h) \mid g \in G h \in H\}$ together with the multiplication

$$
(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right)
$$

is again a group.

1. Proof that $G \times H$ has the universal property of a product, i.e. for any group L with group homorphisms $g: L \rightarrow G$ and $h: L \rightarrow H$ there exists a unique group homorphism $g \times$ $h: L \rightarrow G \times H$ that makes the diagram commute:

Here p_{1}, p_{2} denote the projections.
2. Suppose G, H are abelian groups. Proof that $G \times H$ is also the product in the category of abelian groups (i.e. any L is required to be abelian).
3. Suppose G, H are abelian groups. Proof that $G \times H$ is also the coproduct or sum, i.e. for any abelian group L with group homorphisms $g: G \rightarrow L$ and $h: H \rightarrow L$ there exists a unique group homorphism $F: G \times H \rightarrow L$ that makes the diagram commute:

4. Suppose G, H are not necessarily abelian groups. Proof that $G \times H$ is not the coproduct in the category of groups.

