Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

The Klein bottle. This is the space $[0,1]^{2} / \sim$ where $(0, y) \sim(1, y)$ and $(x, 0) \sim(1-x, 1)$.

Exercise 29 (Compact-open topology and induced functions) Let X, Y, Z be topological spaces and let $f: Y \rightarrow Z$ be continuous. Prove that the induced maps:

$$
\begin{array}{ll}
\operatorname{Hom}(X, Y) \xrightarrow{f_{*}} \operatorname{Hom}(X, Z), & g \mapsto f \circ g \\
\operatorname{Hom}(Z, X) \xrightarrow{f^{*}} \operatorname{Hom}(Y, X), & g \mapsto g \circ f
\end{array}
$$

are continuous with respect to the compact-open topology.
Exercise 30 (Product vs. Sum for Abelian groups) Let $\left(A_{i}\right)_{i \in I}$ be a family of non-trivial abelian groups. We have seen that for finite families $\prod_{i \in I} A_{i}$ is also the coproduct. This is not true in general.

We define

$$
\prod_{i \in I} A_{i}=\left\{\left(a_{i}\right)_{i \in I}, a_{i} \in A\right\}
$$

with induced addition $\left(a_{i}\right)_{i \in I}+\left(b_{i}\right)_{i \in I}=\left(a_{i}+b_{i}\right)_{i \in I}$. On the other hand we define

$$
\bigoplus_{i \in I} A_{i}=\left\{\sum_{i \in I} a_{i} \mid \text { all but finitely many } a_{i} \text { are zero }\right\}
$$

here $\sum_{i \in I} a_{i}+\sum_{i \in I} b_{i}=\sum_{i \in I}\left(a_{i}+b_{i}\right)$.

1. Show that there is a canonical inclusion $\bigoplus_{i \in I} A_{i} \rightarrow \prod_{i \in I} A_{i}$ that is an isomorphism if and only if I is finite.
2. Show that $\prod_{i \in I} A_{i}$ together with the canonical projections $p_{i}: \prod_{k \in I} A_{k} \rightarrow A_{i}$ is a correct definition for the product, i.e. let B be an abelian group with maps $f_{i}: B \rightarrow A_{i}$ than there exists a unique map $g: B \rightarrow \prod_{i \in I} A_{i}$ such that for all $i \in I$ we have $p_{i} \circ g=f_{i}$.
3. Show that $\bigoplus_{i \in I} A_{i}$ together with the canonical inclusions $j_{i}: A_{i} \rightarrow \bigoplus_{k \in I} A_{k}$ is the sum, i.e. given an abelian group C together with maps $f_{i}: A_{i} \rightarrow C$ then there exists a uniqe map $g: \bigoplus_{i \in I} A_{i} \rightarrow C$ such that $g \circ j_{i}=f_{i}$ for all $i \in I$.

Hence we have shown, that only finite coproducts and products are the same for abelian groups. Remark: All maps in this exercise are understood to be group homomorphisms.

Exercise 31 (Compactness and Mapping space) Consider the space $I^{I}=\operatorname{Hom}(I, I)$ with the compactopen topology, where $I=[0,1]$. As we know I is compact. Prove that I^{I} is not compact.
(If necessary you may search the web for more information on the compact-open topology.)
Exercise 32 ((Co-)Product of groups continued) Recall that any group can be written as a set of generators along with relations. For example

$$
\mathbb{Z} \cong\langle a\rangle, \quad \mathbb{Z} \times \mathbb{Z} \cong\left\langle a, b \mid a b a^{-1} b^{-1}=1\right\rangle
$$

Relations can be arbitrary difficult and there is no algorithm that can decide in general wether or not a group is trivial if it is given by relations. However, some groups are easily understood, if given by relations. E.g the symmetry group of an n-gone is given by

$$
\left\langle s, t \mid s^{2}=t^{n}=(s t)^{2}=1\right\rangle
$$

Suppose that G, H are (not necessarily) abelian groups. Consider the following group

$$
\begin{aligned}
G * H:=\langle g \in G, h \in H| g_{1} \cdot G * H g_{2} & =\left(g_{2} \cdot G g_{2}\right), g_{1}, g_{2} \in G \\
h_{1} \cdot G * H h_{2} & \left.=\left(h_{2} \cdot G h_{2}\right), h_{1}, h_{2} \in H\right\rangle .
\end{aligned}
$$

Here the only relations are given by the relations of G and H. This is called the free product of G and H not to be confused with the free abelian product $G \times H$ for G and H abelian.

1. Describe $\mathbb{Z} * \mathbb{Z}$.
2. Show that $G * H$ is the coproduct in the category of groups.

At some point we will see that $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right) \cong \pi_{1}\left(S^{1}, x_{0}\right) * \pi_{1}\left(S^{1}, x_{0}\right) \cong \mathbb{Z} * \mathbb{Z}$. Even more: This is true for two arbitrary nice spaces.

