Exercise Sheet for Topology I, 2017/18

Prof. Pavle Blagojević, Dr. Moritz Firsching, Jonathan Kliem

Exercise 33 (Symmetry group of the Herrnhuter Stern.)

What is the symmetry group of a complete Herrnhuter Stern?
Here complete means with no piece removed for the light bulb. A Herrnhuter Stern is composed of eighteen square and eight triangular cone-shaped points.

Exercise 34 (Compact-open topology and (co-)product) Let X, Y, Z be topological spaces.

1. Continuous maps $X \sqcup Y \rightarrow Z$ are in one-to-correspondence with pairs of maps $X \rightarrow Y$ and $Y \rightarrow Z$, so there is a canocical isomorphism

$$
\operatorname{map}(X \sqcup Y, Z) \cong \operatorname{map}(X, Z) \times \operatorname{map}(Y, Z),
$$

where $\operatorname{map}(X, Z)$ denotes the set of all continuous maps $X \rightarrow Z$. Proof that this isomorphism respects the compact-open topology, i.e. we have a homeomorphism:

$$
\operatorname{Hom}(X \sqcup Y, Z) \cong \operatorname{Hom}(X, Z) \times \operatorname{Hom}(Y, Z)
$$

2. Likewise the universal property of the product gives a canonical isomorphism

$$
\operatorname{map}(X, Y \times Z) \cong \operatorname{map}(X, Y) \times \operatorname{map}(X, Z)
$$

Proof that this as well induces a homeomorphism

$$
\operatorname{Hom}(X, Y \times Z) \cong \operatorname{Hom}(X, Y) \times \operatorname{Hom}(X, Z) .
$$

3. Do the previous statements extend to infite disjoint unions resp. infinite products?

Exercise 35 (Pushouts for topological spaces)
Suppose we are given topological spaces X, Y_{1}, Y_{2} with (continuous) maps $\alpha_{1}: X \rightarrow Y_{1}$ and $\alpha_{2}: X \rightarrow Y_{2}$. A pushout of this consists of a topological space P together with maps $\varphi_{1}: Y_{1} \rightarrow P$ and $\varphi_{2}: Y_{2} \rightarrow P$ such that $\varphi_{2} \circ \alpha_{2}=\varphi_{1} \circ \alpha_{1}$ and such that for all topological spaces Z with maps $\psi_{1}: Y_{1} \rightarrow Z$ and $\psi_{2}: Y_{2} \rightarrow Z$ with $\psi_{2} \circ \alpha_{2}=\psi_{1} \circ \alpha_{1}$ there exists a unique map $h: P \rightarrow Z$ such that $h \circ \varphi_{1}=\psi_{1}$ and $h \circ \varphi_{2}=\psi_{2}$. More conveniently a pushout can be expressed with the following picture:

1. Proof that the pushout is isomorphic to

$$
Y_{1} \sqcup Y_{2} / \sim
$$

where \sim is the relation given by $\alpha_{1}(x) \sim \alpha_{2}(x)$ for all $x \in X$.
Next we will calculate some concrete examples of pushouts. (Later, we will see that those particular examples are constructions of CW-complexes.)
2.

4.

6.

5.

7.

8.

f is described by going clockwise around the first circle, then clockwise around the second circle, then counter-clockwise around the first circle and then counter-clockwise around the second circle. A different way to describe this: Let $[a] \in \pi_{1}\left(S^{1} \vee \mathrm{pt}, x_{0}\right),[b] \in \pi_{1}\left(p t \vee S^{1}, x_{0}\right)$ represent generators (going around the circle in a specific direction. Then $f=a b a^{-1} b^{-1}$.
9.

Here $f=a b a b^{-1}$.
10.

Here $f=a^{2}$.

Exercise 36 (Pushouts for groups) As above we can define a pushout for groups, where the G, H_{1}, H_{2}, P, L are groups and the maps are group homomorphisms:

The pushout for groups is given by by $H_{1} * H_{2} / N$ where N is the normal subgroup generated by $\alpha_{1}(g) \alpha_{2}\left(g^{-1}\right)$ for all $g \in G$. In terms of generators and relations this is

$$
\begin{aligned}
\left\langle g \in H_{1}, h \in H_{2}\right| h_{1} \cdot H_{1} * H_{2} h_{2} & =\left(h_{2} \cdot H_{1} h_{2}\right), h_{1}, h_{2} \in H_{1}, \\
h_{1} \cdot H_{1} * H_{2} h_{2} & =\left(h_{2} \cdot H_{2} h_{2}\right), h_{1}, h_{2} \in H_{2}, \\
\alpha_{1}(g) & \left.=\alpha_{2}(g), g \in G\right\rangle,
\end{aligned}
$$

so the relations are given by the relations in H_{1}, the relations in H_{2} and additionally the relations we need for the diagram to commute.
This construction can be arbitrarilly difficult to understand, however in particual examples, calculations are easier. Calculate the following pushouts:
1.

$\{0\}$
Where f is an arbitrary group homomorphisms.
2.

$\{0\}$
Here $f(g)=g_{1} g_{2}^{-1}$, where g is a generator of \mathbb{Z} and g_{1}, g_{2} generate $\mathbb{Z} * \mathbb{Z}$.
3.

Here $f(g)=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$, where g is a generator of \mathbb{Z} and g_{1}, g_{2} generate $\mathbb{Z} * \mathbb{Z}$.

