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1. Given a topological space X and a subset A ⊂ X . Let U ⊂ A be open in A with respect to the
subspace topology. Which conditions will suffice to make U open in X .

⃝ No farther conditions needed.
⃝ A is closed.
√

A is open.

⃝ A compact.
⃝ A compact and X Hausdorff.

2. Given a topological space X and a subset A ⊂ X . Let U ⊂ A be closed in A with respect to the
subspace topology. Which conditions will suffice to make U closed in X .

⃝ No farther conditions needed.
√

A is closed.

⃝ A is open.
⃝ A compact.
√

A compact and X Hausdorff.

3. We have seen some properties of spaces and examples where those properties are preserved and
were they are not preserved.
(a) Which of the following constructions preserve T1?√

Finite Product.
√

Subspace. ⃝ Quotient.
√

Infinite Disjoint Union.

(b) Which of the following constructions preserve Hausdorff?
√

Finite Product.
√

Subspace. ⃝ Quotient.
√

Infinite Disjoint Union.

(c) Which of the following constructions preserve compactness?
√

Finite Product. ⃝ Subspace.
√

Quotient. ⃝ Infinite Disjoint Union.
(d) Which of the following constructions preserve path-connectness?

√
Finite Product. ⃝ Subspace.

√
Quotient. ⃝ Infinite Disjoint Union.

(e) Suppose we start with (a) metric space(s) with induced topology. Which of the following con-
structions give rise to some induced metric, that induces the correct topology on the construc-
tion?
√

Finite Product.
√

Subspace. ⃝ Quotient.
√

Infinite Disjoint Union.



4. Given some topological spaces X and Y and a set map f : X → Y . What is sufficient to check for
continuity?

⃝ For every U ⊂ Y open it holds that f−1(U) is contained in some open set.
√

For every B ⊂ Y we have f−1(B◦) ⊂ f−1(B)◦.

⃝ For every B ⊂ Y we have f−1(B)◦ ⊂ f−1(B◦).
√

For every U ⊂ Y open and every x ∈ U we can find some x ∈ V ⊂ U such that V is
open with respect to the subspace topology and f−1(V ) is open.

⃝ For every U ⊂ Y open there is some V ⊂ U open in Y such that f−1(V ) is open.
⃝ For all x, y ∈ Y there is U ⊂ Y open with x ∈ U ̸∋ y and such that f−1(U) is open.
⃝ For all x, y ∈ Y we can find some A ⊂ Y closed with x ∈ A ̸∋ y such that f−1(A) is

closed.
√

X has discrete topology.

⃝ Y has discrete topology.
⃝ X has indiscrete topology.
√

Y has indiscrete topology.

5. Which of the following statements is true? Which are false?
(a) Let f : X → Y be an injective open continuousmap and let X be compact. Then Y is compact.

⃝ True.
√

False.

(b) Let f : X → Y be an injective closed continuous map and let X be compact. Then Y is
compact.
⃝ True.

√
False.

(c) Let f : X → Y be an injective open continuousmap and let Y be compact. Then X is compact.
⃝ True.

√
False.

(d) Let f : X → Y be an injective closed continuous map and let Y be compact. Then X is
compact.

√
True. ⃝ False.
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6. Let X be a space and let P ⊂ X be a path-connected compontent. What do we know?
√

P is connected.
√

P is path-connected.

⃝ P is open.
⃝ P is closed.

7. Let X be a space and let P ⊂ X be a connected compontent. What do we know?
√

P is connected.

⃝ P is path-connected.
⃝ P is open.
√

P is closed.

8. Consider the space Y = [−1, 1] as a subspace ofRwith Euclidean topology. Which of the following
sets are open in Y , which are open in R?
(a) A = {x | 1

2 < |x| < 1}.
√

Open in Y .
√

Open in R.
(b) B = {x | 1

2 < |x| ≤ 1}.
√

Open in Y . ⃝ Open in R.
(c) C = {x | 1

2 ≤ |x| < 1}. ⃝ Open in Y . ⃝ Open in R.
(d) D = {x | 1

2 ≤ |x| ≤ 1}. ⃝ Open in Y . ⃝ Open in R.
(e) E = {x | 0 < |x| < 1 and 1

x /∈ Z}.
√

Open in Y .
√

Open in R.

9. Consider the space Y = (−1, 1) × [−1, 1] as a subset of R2 with the Euclidean topology. Which of
the following sets are closed in Y , which are closed in R2?
(a) A = {(x, y) ∈ Y | x2 + y2 = 1}.

√
Closed in Y . ⃝ Closed in R2.

(b) B = {(x, y) ∈ Y | x2 + y2 = 1
2}.

√
Closed in Y .

√
Closed in R2.

(c) C = {(x, y) ∈ Y | x2 + y2 ≤ 1}.
√

Closed in Y . ⃝ Closed in R2.
(d) D = {(x, y) ∈ Y | 2x2 + y2 ≤ 1}.

√
Closed in Y .

√
Closed in R2.

(e) E = {(x, y) ∈ Y | x2 + 2y2 ≤ 1}.
√

Closed in Y . ⃝ Closed in R2.
(f) E = {(x, y) ∈ Y | x + y > 1}. ⃝ Closed in Y . ⃝ Closed in R2.
(g) F = {(x, y) ∈ Y | 2x + y ≥ 1}.

√
Closed in Y . ⃝ Closed in R2.
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10. Let A, B, (Ci)i∈I ⊂ X . Which inclusions hold?
(a) A ∩ B

√
⊂ ⃝ ⊃ A ∩ B

(b) A ∪ B
√

⊂
√

⊃ A ∪ B

(c) A × B
√

⊂
√

⊃ A × B

(d) A\B ⃝ ⊂
√

⊃ A\B

(e)
∩

i∈I Ci
√

⊂ ⃝ ⊃
∩

i∈I Ci

(f)
∪

i∈I Ci ⃝ ⊂
√

⊃
∪

i∈I Ci

(g)
∏

i∈I Ci ⃝ ⊂
√

⊃
∏

i∈I Ci

11. Remember the digits your old alarm clock produced: We consider each digit as a topological space
with thin lines and connected such that 1 and 0 are homeomorphic to I = [0, 1] resp. S1. Those
spaces come with canonical inclusions. Mark for each inclusion if this is the inclusion of a retract
and if this is the inclusion of a deformation retract:

2

- 5 6

3 9 8

1 4

7 0

✓□ retr.

□ def. retr.

✓□ retr.
✓□ def. retr.

✓□ retr.
✓□ def. retr.

✓□ retr.✓□ def. retr.

✓□ retr.□ def. retr.

✓□ retr.
□ def. retr.

✓□ retr.
□ def. retr.

✓□ retr.
□ def. retr.

✓□ retr.
□ def. retr.

✓□ retr.
✓□ def. retr.

✓□ retr.
✓□ def. retr.

✓□ retr.
✓□ def. retr.

✓□ retr.
□ def. retr. ✓□ retr.

□ def. retr.

✓□ retr.□ def. retr.

✓□ retr.

□ def. retr.
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Addendum from Monday, December 11th
Todays tutorial discoverd four mistakes in the quiz. Two in question 5 and two in question 10. In
question 5 (a) and (b) the image of a compact space needs to be compact, but the map was never claimed
to be surjective. E.g. the inclusion

[0, 1] ↪→ R

is closed injective, but R is not compact. Likewise

[0, 1] ↪→ [0, 1] ⊔ R

is open injective, but [0, 1] ⊔ R is not compact.
As of question 10, it is actually true, that A\B ⊂ A\B. We have to show, that if x ∈ A then x ∈ B or
x ∈ A\B, i.e. A ⊂ B ∪ A\B. But this follows from B ∪ C = B ∪ C for C = A\B.
Also

∩
i∈I Ci ⊂

∩
i∈I Ci. This is simply because

∩
i∈I Ci is a closed set that contains

∩
i∈I Ci (because

Ci ⊂ Ci) as well as it’s closure.
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