Exercise Sheet for Topology II, 18

Prof. Pavle Blagojević, Jonathan Kliem

Discussion: Wednesday, April 25th, 2018

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$\downarrow F(f) \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

The formal definition (without pictures) of a natural transformation can be hard to grasp. Basically, a natural transformation is something that makes the above diagram commmute. More formal: Let F, G be functors $\mathcal{C} \to \mathcal{D}$. A natural transformation $\alpha \colon F \to G$ is a family $\left(F(A) \xrightarrow{\alpha_A} G(A)\right)_{A \in \mathcal{C}}$ of morphisms in \mathcal{D} such that for every $B \in \mathcal{C}$ and any $f \colon \mathcal{C}(A, B)$ the above diagram commutes.

Exercise 1 Show that a map in a category can have at most one inverse, i.e., let $A, B \in C$ and $f \in Mor_{\mathcal{C}}(A, B)$. Further, let $g, h \in Mor_{\mathcal{C}}(B, A)$ such that $g \circ f = h \circ f = id_A$. Then g = h.

Exercise 2 Let C, D be categories. There is only one sensible way to define $C \times D$. Define it!

Exercise 3 Prove that $C \times D$ has the universal property of a product in the category of categories. The category of categories consists of categories as objects and functors as morphisms.

The fundamental property of a product: Let $A, B \in C$. An object $C \in C$ with maps $p_1 \in Mor(C, A)$ and $p_2 \in Mor(C, B)$ is called the product of A and B if for every $D \in D$ with maps $f_1 \in Mor(D, A), f_2 \in Mor(D, B)$ there exists a unique morphism $g \in Mor(D, C)$ such that $q_1 \circ g = f_1$ and $g_1 \circ g = f_2$:

Exercise 4 Prove that functors preserve isomorphisms, i.e., let $F : \mathcal{C} \to \mathcal{D}$ be a functor and let $f \in Mor(A, B)$ be an isomorphism, then F(f) is also an isomorphism.

Does this hold for contravariant functors as well?

- **Exercise 5** Let G be a group. Consider G as a category with one object and the group elements as morphisms. What is a subcategory of G?
- **Exercise 6** Let *G* be a group regarded as category.
 - 1. Prove that a functor from G to the category of topological spaces is a (left) G-space. A left G-space is a topological space with a left-G-action such that this action is continuous (for all $g \in G$ the map $x \mapsto g \circ x$ is continuous).
 - 2. What are natural transformations betweens G-spaces?

Sheet 1