Exercise Sheet for Topology II, 18

Prof. Pavle Blagojević, Jonathan Kliem

Sheet 3 Discussion: Wednesday, May 9th, 2018

Exercise 12 (The product, the coproduct, ...)

- 1. Let \mathcal{C} be a category and A, B be objects of \mathcal{C} . Assume that their product and coproduct exist. Denote by $A \sqcup B$ the coproduct and $A \times B$ their product. Show that they are unique up to canocial isomorphism. (Use the fundamental property of a product and of a coproduct.) In fact any limit or colimit is unique up to canonical isomorphism.
- 2. In which categories do (co-)products exist? How are they constructed?

Exercise 13 Assume that \mathcal{C} is a category with products and coproducts. Remember the construction of $\mathcal{C} \times \mathcal{C}$. Show that product and coproduct define functors $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$.

Exercise 14 Assume that a category $\mathcal C$ has product and coproduct. Assume in addition that $\operatorname{Mor}_{\mathcal C}(A,B)$ is equipped with the structure of an abelian group for all A,B objects of $\mathcal C$, which is distributive, i.e. $(f+f')\circ g=f\circ g+f'\circ g$ and $f\circ (g+g')=f\circ g+f\circ g'$. Show that there is a unique $\operatorname{map}\kappa\colon A\sqcup B\to A\times B$ such that

$$p_A \circ \kappa \circ i_A = \mathrm{id}_A, \quad p_B \circ \kappa \circ i_B = \mathrm{id}_B$$

 $p_A \circ \kappa \circ i_B = 0, \quad p_B \circ \kappa \circ i_A = 0$

and the map κ is an isomorphism. $(i_A, i_B \text{ denote the inclusion maps } A, B \hookrightarrow A \sqcup B, p_A, p_B \text{ denote the projections } A \times B \to A, B.)$

For which categories do you know of an abelian distributive structure on $Mor_{\mathcal{C}}(A, B)$?

Exercise 15 (Homology of a complex) A \mathbb{Z} -complex consists of abelian groups C_n for $n \in \mathbb{Z}$ and maps $d_n \colon C_n \to C_{n-1}$ such that $d_{n-1} \circ d_n = 0$ for all $n \in \mathbb{Z}$. We can then calculate homology of the complex:

$$H_n(C) := \ker(d_n) / \operatorname{im}(d_{n+1})$$

- 1. Construct a complex such that $H_0(C) \cong \mathbb{Z} H_n(C) = 0$ for $n \neq 0$.
- 2. Construct a complex such that $H_n(C) = \mathbb{Z}/2\mathbb{Z}$ for $n \geq 1$, $H_0(C) = \mathbb{Z}$ and $H_n(C) = 0$ for n < 0.

Exercise 16 (Snake Lemma)

1. Recall: Let R be a commutative ring and let M,N be R-modules. Let $f\colon M\to N$ be an R-module homomorphism then there exists an exact sequence

$$0 \to \ker(f) \to M \to N \to \operatorname{coker}(f) \to 0$$
,

where $\ker(f) = \{x \in M | f(x) = 0\}$ and $\operatorname{coker}(f) = N/\operatorname{im}(f)$.

2. Let $A,B,C,A^\prime,B^\prime,C^\prime$ be R-modules. Suppose the following commutative diagram has exact rows:

Prove that there exists an exact sequence

$$\ker(f) \to \ker(g) \to \ker(h) \xrightarrow{\partial} \operatorname{coker}(f) \to \operatorname{coker}(g) \to \operatorname{coker}(h).$$