Exercise Sheet for Topology II, 18

Prof. Pavle Blagojević, Jonathan Kliem

Sheet 3
Discussion: Wednesday, May 9th, 2018
Exercise 12 (The product, the coproduct, ...)

1. Let \mathcal{C} be a category and A, B be objects of \mathcal{C}. Assume that their product and coproduct exist. Denote by $A \sqcup B$ the coproduct and $A \times B$ their product. Show that they are unique up to canocial isomorphism. (Use the fundamental property of a product and of a coproduct.) In fact any limit or colimit is unique up to canonical isomorphism.
2. In which categories do (co-)products exist? How are they constructed?

Exercise 13 Assume that \mathcal{C} is a category with products and coproducts. Remember the construction of $\mathcal{C} \times \mathcal{C}$. Show that product and coproduct define functors $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$.

Exercise 14 Assume that a category \mathcal{C} has product and coproduct. Assume in addition that $\operatorname{Mor}_{\mathcal{C}}(A, B)$ is equipped with the structure of an abelian group for all A, B objects of \mathcal{C}, which is distributive, i.e. $\left(f+f^{\prime}\right) \circ g=f \circ g+f^{\prime} \circ g$ and $f \circ\left(g+g^{\prime}\right)=f \circ g+f \circ g^{\prime}$. Show that there is a unique map $\kappa: A \sqcup B \rightarrow A \times B$ such that

$$
\begin{array}{cl}
p_{A} \circ \kappa \circ i_{A}=\operatorname{id}_{A}, & p_{B} \circ \kappa \circ i_{B}=\operatorname{id}_{B} \\
p_{A} \circ \kappa \circ i_{B}=0, & p_{B} \circ \kappa \circ i_{A}=0
\end{array}
$$

and the map κ is an isomorphism. $\left(i_{A}, i_{B}\right.$ denote the inclusion maps $A, B \hookrightarrow A \sqcup B, p_{A}, p_{B}$ denote the projections $A \times B \rightarrow A, B$.)
For which categories do you know of an abelian distributive structure on $\operatorname{Mor}_{\mathcal{C}}(A, B)$?
Exercise 15 (Homology of a complex) A \mathbb{Z}-complex consists of abelian groups C_{n} for $n \in \mathbb{Z}$ and maps $d_{n}: C_{n} \rightarrow C_{n-1}$ such that $d_{n-1} \circ d_{n}=0$ for all $n \in \mathbb{Z}$. We can then calculate homology of the complex:

$$
H_{n}(C):=\operatorname{ker}\left(d_{n}\right) / \operatorname{im}\left(d_{n+1}\right)
$$

1. Construct a complex such that $H_{0}(C) \cong \mathbb{Z} H_{n}(C)=0$ for $n \neq 0$.
2. Construct a complex such that $H_{n}(C)=\mathbb{Z} / 2 \mathbb{Z}$ for $n \geq 1, H_{0}(C)=\mathbb{Z}$ and $H_{n}(C)=0$ for $n<0$.

Exercise 16 (Snake Lemma)

1. Recall: Let R be a commutative ring and let M, N be R-modules. Let $f: M \rightarrow N$ be an R-module homomorphism then there exists an exact sequence

$$
0 \rightarrow \operatorname{ker}(f) \rightarrow M \rightarrow N \rightarrow \operatorname{coker}(f) \rightarrow 0
$$

where $\operatorname{ker}(f)=\{x \in M \mid f(x)=0\}$ and $\operatorname{coker}(f)=N / \operatorname{im}(f)$.
2. Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ be R-modules. Suppose the following commutative diagram has exact rows:

Prove that there exists an exact sequence

$$
\operatorname{ker}(f) \rightarrow \operatorname{ker}(g) \rightarrow \operatorname{ker}(h) \xrightarrow{\partial} \operatorname{coker}(f) \rightarrow \operatorname{coker}(g) \rightarrow \operatorname{coker}(h) .
$$

