Exercise Sheet for Topology II, 18

Prof. Pavle Blagojević, Jonathan Kliem

Sheet 4

Discussion: Wednesday, May 16th, 2018

Let $(C_{\bullet}, c_{\bullet})$ and $(D_{\bullet}, d_{\bullet})$ be chain \mathbb{Z} -chain complexes and $f, g \colon C_{\bullet} \to D_{\bullet}$ be chain maps. A chain homotopy between f and g is a collection of group homomorphisms $h_n \colon C_n \to D_{n+1}$ for each $n \in \mathbb{Z}$ such that

$$f_n - g_n = h_{n-1} \circ c_n + d_{n+1} \circ h_n.$$

Exercise 17 (Product and Coproduct of chain complexes) Consider the category of \mathbb{Z} -chain complexes consisting of \mathbb{Z} -chain complexes as objects and chain maps as maps. Prove that this category has product and coproduct.

Exercise 18 Prove that $H_n(C)$ defines a functor from \mathbb{Z} -chain complexes to abelian groups for all $n \in \mathbb{Z}$.

Suppose $f_{\bullet}, g_{\bullet} \colon C_{\bullet} \to D_{\bullet}$ are chain maps that are homotopic (so there is a chain homotopy from f to g). Prove that $H_n(f) = H_n(g)$ for all $n \in \mathbb{Z}$.

There is a homotopy category of \mathbb{Z} -chain complexes, where chain maps which are homotopic are considered to be the same. Conclude that $H_n(C)$ defines a functor from the homotopy category of \mathbb{Z} -chain complexes to the category of abelian groups.

Exercise 19 Let

$$0 \to A \to B \to C \to 0$$

be a short exact sequence of abelian groups and let D be an abelian group.

What part of

$$0 \to \operatorname{Hom}(C, D) \to \operatorname{Hom}(B, D) \to \operatorname{Hom}(A, D) \to 0$$

is exact?

What part of

$$0 \to \operatorname{Hom}(D, A) \to \operatorname{Hom}(D, B) \to \operatorname{Hom}(D, C) \to 0$$

is exact?

What part of

$$0 \to A \otimes D \to B \otimes D \to C \otimes D \to 0$$

is exact (google tensor product, if you don't know what it is).

Give counterexamplexes for those parts, that are not exact.