Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

« Vorherige Version anzeigen Version 4 Nächste Version anzeigen »

Nach einer explorativen Analyse der Daten und der Wahl einer zu Messniveau und Funktionszusammenhang passenden Modellklasse, geht es darum das bestmögliche Modell zu schätzen. Daher stellt sich die Frage, was "bestmögliches" Modell bedeutet und wie ein solches bestimmt werden kann. In diesem Zusammenhang steht das berühmte Zitat: "All models are wrong, but some are useful " (Alle Modelle sind falsch, manche aber sind nützlich) von George Box. Der Ausspruch greift den Gedanken auf, dass mit keinem Regressionsmodell die Realität eins zu eins abgebildet werden kann. Es gibt zu viele oft auch unbeobachtbare Einflussfaktoren, die nicht in das Modell mitaufgenommen werden können. Das Thema der Modellselektion ist also ein allgegenwärtiges in der Statistik/ Regressionsanalyse. Dennoch gibt es keine absoluten, objektiven Kriterien an denen entschieden werden kann, ob das eine oder das andere Modell gewählt werden sollte. Vielmehr exisitieren viele verschiedene Verfahren, die versuchen zwischen möglichst viel Erklärungsgehalt des Modells und möglichst wenig Komplexität (siehe dazu Ockhams Rasiermesser) abzuwägen.

 

  • Keine Stichwörter