Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

« Vorherige Version anzeigen Version 7 Nächste Version anzeigen »

Die logistische Regression ist ein Modell, bei der die abhängige Variable dichotom ist, d.h. nur zwei Werte annehmen kann ("0" und "1" oder "Erfolg" und "Misserfolg"). Sie ist folglich binomial verteilt (\(Y_i|x_{( i )}\sim\mathcal{Ber}(p_i)\)). Die Fehlerterme werden bei diesem Modell als logistisch verteilt angenommen. Falls allerdings die abhängige Variable multinomial (\(Y_i|x_{( i )}\sim\operatorname{Categorical}(p_{i,1},\dots,p_{i,m})\)) vorliegt (es treten mehr als zwei unterschiedliche Ausprägungen auf), kann eine verallgemeinerte Version, das multinomiale logistische Regressionsmodell verwendet werden.

Inhaltsverzeichnis

Variablen und deren Zusammenhang

Bei der logistischen Regression können die unabhängige/n Variable/n Variablen jedes beliebige Skalenniveau annehmen und müssen auch nicht innerhalb der einzelnen unabhängigen Variablen \(x_1,...,x_p\) einheitlich sein.

abhängige Variable (y) dichotom (binomial), multinomial
unabhängige/n Variable/n (x)beliebiges Skalenniveau (die Skalenniveaus der einzelnen \(x_1,...,x_p\) dürfen sich auch unterscheiden, liegt eine multinomiale Variable vor, so muss eine Zerlegung in Dummy-Variablen stattfinden)

Ein Fragestellung bei der sich eine logistischer Regression anbieten würde, wäre beispielsweise, welche Faktoren die Wahrscheinlichkeit beeinflussen, dass eine Person Raucher ist. In diesem Fall würde man als abhängige Variable eine binomiale  0-1 kodierte Variable verwenden, wobei 1 für Raucher und 0 für Nichtraucher steht. 

Das Ziel der logistischen Regression ist die Vorhersage der Wahrscheinlichkeit mit der ein bestimmtes Ereignis (unter Verwendung von Einflussfaktoren) eintritt.

Einführung in das Bespiel: Rauchen und Nettoeinkommen

Die Variable, mit der untersucht werden soll, ob sie einen Einfluss auf den Status "Raucher" hat, ist metrisch skaliert und misst das Nettoeinkommen. Die Variablen entstammen dem Datensatz Umfragedaten_v1_an. Das Nettoeinkommen wird in Euro pro Monat gemessen und der Status ist binär (0 für Nichtraucher und 1 für Raucher). Meistens unterliegt einer statistischen Fragestellung eine theoretische Hypothese. In diesem Beispiel soll folgende Hypothese überprüft werden:

Hypothese: Personen aus oberen Gesellschaftsschichten, also mit einem höheren Nettoeinkommen, rauchen weniger.

Für einen ersten Überblick über die beiden Variablen bieten sich für das entsprechende Skalenniveau passende Maße an. Bei metrischen Variablen können dies z.B. der Mittelwert oder der Median sowie das Minimum und das Maximum sein. In diesem Fall beträgt der Mittelwert 1569.513 Euro und der Median 1300 Euro.

Auch bei der binären Variable lässt sich ein Mittelwert berechnen. Dieser beträgt im Beispiel 0.294. Dies ist interpretierbar als der Anteil an Rauchern. In diesem Datensatz rauchen folglich 29.4% der Befragten.

Um einen ersten Überblick über den Zusammenhang der beiden Variablen zu bekommen, ist es auch hier möglich, sich einen Scatterplot anzuschauen:


Aufbau und Interpretation der logistischen Regression

Das (binomiale) logistische Regressionsmodell ist durch folgende Gleichung gegeben:

$$P(y_i=1|X=x_{( i )})=G(x_{( i )}\prime\beta)=p_i=\frac{exp(\beta_1+x_{i,2}\beta_2+...+x_{i,p}\beta_p)}{1+exp(\beta_1+x_{i,2}\beta_2+...+x_{i,p}\beta_p)}=\frac{1}{1+exp(-\beta_1-x_{i,2}\beta_2-...-x_{i,p}\beta_p)},\forall i\in\{1,\dots,n\} $$

Die Parameter \(\beta_i\) werden mit der Maximum-Likelihood-Methode geschätzt, da eine direkte Berechnung mittels kleinster Quadrate (siehe lineare Regression) nicht möglich ist. Die Schätzwerte werden anhand iterativer Verfahren wie dem Newton-Raphson Algorithmus ermittelt. Da die log-Likelihood Funktion des logistischen Regressionsmodells überall konkav ist, exisitiert ein eindeutiger Maximum-Likelihood Schätzer für die zu bestimmenden Parameter.

Durch Umformung der obigen Gleichung erhält man die sogenannten Logits (\(\text{ln}\left(\frac{p_i}{1-p_i}\right)\)). In dem Beispiel sieht das wie folgt aus:

Hier soll der Zusammenhang zwischen Nettoeinkommen in Euro pro Monat (\(NETTO\)) und der Wahrscheinlichkeit, Raucher zu sein (\(p\)), erklärt werden:

Modell: \(\text{ln}\left(\frac{p_i}{1-p_i}\right)=\beta_0 + \beta_1 \cdot NETTO_i\)

Die Interpretation der marginalen Effekte dieser Modellklasse unterscheidet sich deutlich vom linearen Regressionsmodel. Die marginalen Effekte der Logitregression entsprechen dem Produkt aus geschätztem Parameter und Wahrscheinlichkeitsdichte des Modells:

$$\frac{\partial P(y_i=1|X=x_{( i )})}{\partial x_j}=g(x_{( i )}\prime\beta)\beta_j,$$

wobei \(g(z)=\frac{\partial G(z)}{\partial z}\). Die marginalen Effekte sind also immer von den Ausprägungen aller unabhängigen Variablen ahängig. Da Wahrscheinlichkeitsdichten immer positiv sind, gibt das Vorzeichen des geschätzten Parameters die Richtung des Effekts auf die bedingte Wahrscheinlichkeit an.

Da die marginalen Effekte nicht konstant und deshalb keiner so direkten Interpretation wie im linearen Modell zugänglich sind, werden oft die sogenannten Odds oder die Oddsratio betrachtet. Dabei werden die Odds (für ein kleines Modell mit zwei zu schätzenden Parametern) als \(\text{odds}=exp(\beta_0+\beta_1x)\) und die Oddsratio als

\[\text{OR}=\frac{\text{odds}(x+1)}{\text{odds}(x)}=\frac{\frac{G(x+1)}{1-G(x+1)}}{\frac{G(x)}{1-G(x)}}=\frac{exp(\beta_0+\beta_1(x+1))}{exp(\beta_0+\beta_1x)}=exp(\beta_1),\;\;\text{wobei}\;G(x)=\frac{exp(\beta_0+\beta_1x)}{1+exp(\beta_0+\beta_1x)}\]

dargestellt. Zieht man den Logarithmus von dieser Gleichung, wird unser Modell linear in den Koeffizienten und man kann die gewohnte Interpretation wie in der linearen Regression anwenden. Wird \(x_1\) ceteris paribus um eine Einheit erhöht (alle anderen erklärenden Variablen verbleiben auf dem alten Wert), verändert sich die Oddsratio um \(exp(\beta_1)\), also um \(\beta_1\cdot 100\%\). Inhaltlich stellen die Odds die Chance oder eine Risiko dar. In unserem Beispiel wäre dies das "Risiko", Raucher zu sein. Die Koeffizienten geben dann an, um wieviel Prozent sich das Risiko oder Chance erhöht, wenn man eine der unabhängigen Variablen um eine Einheit erhöht (ceteris paribus).

Hat die abhängige Variable mehr als zwei Ausprägungen (J + 1), ist also multinomial skaliert wird das multinomiale Logitmodell verwendet. Wenn die Fehlerterme unaghängig und gleichverteilt sind nach der Gumbel Verteilung, ergibt sich als Modellgleichung für die Wahrscheinlichkeit, dass \(y_i\) die Ausprägung j annimmt:

$$P(y_i=j|X=x_{( i)})=p_{ij}=\frac{exp(x_{( i )}\prime\beta_j)}{1+\sum_{h=1}^J exp(x_{( i )}\prime\beta_h)},\forall j\in\{1,\dots,J\}$$

Hierbei ist zu beachten, dass zur Parameteridentifikation eine Basiskategorie derart angenommen werden muss, dass beispielsweise gilt \(\beta_0=0\). Sonst können die Parameter nicht eindeutig geschätzt werden. Anders ausgedrückt reicht es J Wahrscheinlichkeiten zu berechnen, um J + 1 Wahrscheinlichkeiten zu bestimmen, da sie sich insgesamt zu eins addieren müssen. Im Fall von J + 1 = 2 landet man wieder beim Standard logistischen Modell (siehe oben).

Komponenten und Begriffe

Die Güte des Modells

1. Gesamtzahl an Beobachtungen:

Die gesamte Anzahl an Beobachtungen im Datensatz entspricht der Anzahl an Zeilen. Diese wird häufig mit n gekennzeichnet. Im Umfragedatensatz gibt es insgesamt 3471 Beobachtungen.

2. Gelöschte Beobachtungen:

Bei fehlenden Werten in Variablen können Beobachtungen für die Modellanalyse nicht berücksichtigt werden. Im Beispiel sind dies 754 Beobachtungen.

3. Zahl der Beobachtungen:

Hiermit ist die Zahl der Beobachtungen gemeint, die zur Anpassung des Modells genutzt wird. Das bedeutet, dass diese Anzahl sich aus der Differenz der Gesamtzahl an Beobachtungen und den gelöschten Beobachtungen auf Grund von fehlenden Werten in den gewünschten Variablen ergibt. In dem Modell wurden 2717 Beobachtungen genutzt.

6. Pseudo R²

Das   basiert auf dem Varianzzerlegungssatz, der besagt, dass sich die Varianz der abhängigen Variablen als die Summe eines Varianzteils, der durch das Regressionsmodell erklärt wird und der Varianz der Residuen (nicht erklärte Varianz) schreiben lässt. Das Bestimmtheitsmaß ist der Quotient aus erklärter Varianz und Gesamtvarianz. Als Anteilswert kann das R² Werte zwischen 0 und 1 annehmen. Das R^2 misst aber nur lineare Zusammenhänge, den es beim Logit-Modell jedoch nicht gibt. Die Definition von „Varianz“ ist im binär-logistischen Fall anders. Als Basis dienen hier Vergleiche der Likelihood Funktion L für das Null- und das vollständige Modell. Bekannte "Pseudo R^2" sind:

$$\text{McFadden}\quad R^2=1-\frac{L_{null}}{L_{voll}}$$

$$\text{Cox&Snell}\quad R^2=1-\left(\frac{L_{null}}{L_{voll}}\right)^{\frac{2}{n}}$$

$$\text{Nagelkerkes}\quad R^2=\frac{1-\left(\frac{L_{null}}{L_{voll}}\right)^{\frac{2}{n}}}{1-(L_{null})^\frac{2}{n}}$$

 

Berechnung und Interpretation des Bestimmtheitsmaßes für das Beispiel Körpergewicht-Körpergröße:

$$R^{2} = \frac{259550.211}{945587.301} = 1- \frac{686037.09}{945587.301} = 0.2745$$

Ein \(R^{2}\) von 0.2745 bedeutet, dass 27.45% der Varianz in Gewicht durch das Modell erklärt werden können.

Die Einschätzung der Höhe des Bestimmheitsmaß hängt oft vom Anwendungsfeld ab. Zur Beurteilung des eigenen Modells ist daher der Vergleich mit anderen Studien (im gleichen Feld) unerlässlich.

Outputs in den verschiedenen Statistikprogrammen

Modellannahmen und deren Überprüfung

  • Keine Stichwörter