Sie zeigen eine alte Version dieser Seite an. Zeigen Sie die aktuelle Version an.

Unterschiede anzeigen Seitenhistorie anzeigen

« Vorherige Version anzeigen Version 57 Nächste Version anzeigen »


Die logistische Regression ist ein Modell, bei der die abhängige Variable dichotom ist, d.h. nur zwei Werte annehmen kann ("0" und "1" oder "Erfolg" und "Misserfolg"). Sie ist folglich binomial verteilt (\(Y_i|x_{( i )}\sim\mathcal{Ber}(p_i)\)). Die Fehlerterme werden bei diesem Modell als logistisch verteilt angenommen. Falls allerdings die abhängige Variable multinomial (\(Y_i|x_{( i )}\sim\operatorname{Categorical}(p_{i,1},\dots,p_{i,m})\)) vorliegt (es treten mehr als zwei unterschiedliche Ausprägungen auf), kann eine verallgemeinerte Version, das multinomiale logistische Regressionsmodell verwendet werden.

Inhaltsverzeichnis

Info

fu:stat bietet regelmäßig Schulungen für Hochschulangehörige sowie für Unternehmen und weitere Institutionen an. Die Inhalte reichen von Statistikgrundlagen (Deskriptive, Testen, Schätzen, lineare Regression) bis zu Methoden für Big Data. Es werden außerdem Kurse zu verschiedenen Software-Paketen gegeben. Auf Anfrage können wir auch gerne individuelle Inhouse-Schulungen bei Ihnen anbieten.

Variablen und deren Zusammenhang

Bei der logistischen Regression können die unabhängige/n Variable/n Variablen jedes beliebige Skalenniveau annehmen und müssen auch nicht innerhalb der einzelnen unabhängigen Variablen \(x_1,...,x_p\) einheitlich sein.

abhängige Variable (\(y\)) dichotom (binomial), multinomial
unabhängige/n Variable/n (\(x\))beliebiges Skalenniveau (die Skalenniveaus der einzelnen \(x_1,...,x_p\) dürfen sich auch unterscheiden, liegt eine multinomiale Variable vor, so muss eine Zerlegung in Dummy-Variablen stattfinden)

Ein Fragestellung, bei der sich eine logistische Regression anbieten würde, wäre beispielsweise, welche Faktoren die Wahrscheinlichkeit beeinflussen, dass eine Person ein Auto besitzt. In diesem Fall würde man als abhängige Variable eine binomiale  0-1 kodierte Variable verwenden, wobei 1 für Autobesitzer und 0 für kein Autobesitzer steht. 

Das Ziel der logistischen Regression ist die Vorhersage der Wahrscheinlichkeit, mit der ein bestimmtes Ereignis (unter Verwendung von Einflussfaktoren) eintritt.

Einführung in das Bespiel: Autobesitz und Einkommen

Die Variable, mit der untersucht werden soll, ob sie einen Einfluss darauf hat, ob man ein Auto besitzt, ist metrisch skaliert und misst das Einkommen. Das Einkommen wird in Euro pro Monat gemessen und der Status ist binär (0 für kein Auto und 1 für Auto). Meistens unterliegt einer statistischen Fragestellung eine theoretische Hypothese. In diesem Beispiel soll folgende Hypothese überprüft werden:

Hypothese: Personen aus oberen Gesellschaftsschichten, also mit einem höheren Einkommen, besitzen öfter ein Auto.

Für einen ersten Überblick über die beiden Variablen bieten sich für das entsprechende Skalenniveau passende Maße an. Bei metrischen Variablen können dies z.B. der Mittelwert oder der Median sowie das Minimum und das Maximum sein. In diesem Fall beträgt der Mittelwert des Einkommens 650.9736 Euro und der Median 646.04 Euro.

Auch bei der binären Variable lässt sich ein Mittelwert berechnen. Dieser beträgt im Beispiel 0.5. Dies ist interpretierbar als der Anteil an Autobesitzern. In diesem Datensatz besitzen folglich 50% der Befragten ein Auto.

Um einen ersten Überblick über den Zusammenhang der beiden Variablen zu bekommen, ist es auch hier möglich, sich einen Scatterplot anzuschauen:


Aufbau und Interpretation der logistischen Regression

Das (binomiale) logistische Regressionsmodell ist durch folgende Gleichung gegeben:

$$P(y_i=1|X=x_{( i )})=G(x_{( i )}\prime\beta)=p_i=\frac{exp(\beta_1+x_{i,2}\beta_2+...+x_{i,p}\beta_p)}{1+exp(\beta_1+x_{i,2}\beta_2+...+x_{i,p}\beta_p)}=\frac{1}{1+exp(-\beta_1-x_{i,2}\beta_2-...-x_{i,p}\beta_p)},\forall i\in\{1,\dots,n\} $$

Die Parameter \(\beta_i\) werden mit der Maximum-Likelihood-Methode geschätzt, da eine direkte Berechnung mittels kleinster Quadrate (siehe lineare Regression) nicht möglich ist. Die Schätzwerte werden anhand iterativer Verfahren wie dem Newton-Raphson Algorithmus ermittelt. Da die log-Likelihood Funktion des logistischen Regressionsmodells überall konkav ist, exisitiert ein eindeutiger Maximum-Likelihood Schätzer für die zu bestimmenden Parameter.

Durch Umformung der obigen Gleichung erhält man die sogenannten Logits (\(\text{ln}\left(\frac{p_i}{1-p_i}\right)\)). In dem Beispiel sieht das wie folgt aus:

Hier soll der Zusammenhang zwischen Einkommen in Euro pro Monat (\(income\)) und der Wahrscheinlichkeit, ein Auto zu besitzen (\(p\)), erklärt werden:

Modell: \(\text{ln}\left(\frac{p_i}{1-p_i}\right)=\beta_0 + \beta_1 \cdot income_i\)

Die Interpretation der marginalen Effekte dieser Modellklasse unterscheidet sich deutlich vom linearen Regressionsmodell. Die marginalen Effekte der Logitregression entsprechen dem Produkt aus geschätztem Parameter und Wahrscheinlichkeitsdichte des Modells:

$$\frac{\partial P(y_i=1|X=x_{( i )})}{\partial x_j}=g(x_{( i )}\prime\beta)\beta_j,$$

wobei \(g(z)=\frac{\partial G(z)}{\partial z}\). Die marginalen Effekte sind also immer von den Ausprägungen aller unabhängigen Variablen abhängig. Da Wahrscheinlichkeitsdichten immer positiv sind, gibt das Vorzeichen des geschätzten Parameters die Richtung des Effekts auf die bedingte Wahrscheinlichkeit an.

Da die marginalen Effekte nicht konstant und deshalb keiner so direkten Interpretation wie im linearen Modell zugänglich sind, werden oft die sogenannten Odds oder die Oddsratio betrachtet. Dabei werden die Odds (für ein kleines Modell mit zwei zu schätzenden Parametern) als \(\text{odds}=exp(\beta_0+\beta_1x)\) und die Oddsratio als

\[\text{OR}=\frac{\text{odds}(x+1)}{\text{odds}(x)}=\frac{\frac{G(x+1)}{1-G(x+1)}}{\frac{G(x)}{1-G(x)}}=\frac{exp(\beta_0+\beta_1(x+1))}{exp(\beta_0+\beta_1x)}=exp(\beta_1),\;\;\text{wobei}\;G(x)=\frac{exp(\beta_0+\beta_1x)}{1+exp(\beta_0+\beta_1x)}\]

dargestellt. Zieht man den Logarithmus von dieser Gleichung, wird unser Modell linear in den Koeffizienten und man kann die gewohnte Interpretation wie in der linearen Regression anwenden. Wird \(x_1\) ceteris paribus um eine Einheit erhöht (alle anderen erklärenden Variablen verbleiben auf dem alten Wert), verändern sich die Odds um \(exp(\beta_1)\), also um \(\beta_1\cdot 100\%\). Inhaltlich stellen die Odds die Chance oder ein Risiko dar. In unserem Beispiel wäre dies die "Chance", ein Auto zu besitzen. Die Koeffizienten geben dann an, um wieviel Prozent sich das Risiko oder die Chance erhöht, wenn man eine der unabhängigen Variablen um eine Einheit erhöht (ceteris paribus).

Hat die abhängige Variable mehr als zwei Ausprägungen (J + 1), ist also multinomial skaliert wird das multinomiale Logitmodell verwendet. Wenn die Fehlerterme unabhängig und gleichverteilt nach der Gumbel Verteilung sind, ergibt sich als Modellgleichung für die Wahrscheinlichkeit, dass \(y_i\) die Ausprägung j annimmt:

$$P(y_i=j|X=x_{( i)})=p_{ij}=\frac{exp(x_{( i )}\prime\beta_j)}{1+\sum_{h=1}^J exp(x_{( i )}\prime\beta_h)},\forall j\in\{1,\dots,J\}$$

Hierbei ist zu beachten, dass zur Parameteridentifikation eine Basiskategorie derart angenommen werden muss, dass beispielsweise gilt \(\beta_0=0\). Sonst können die Parameter nicht eindeutig geschätzt werden. Anders ausgedrückt reicht es, J Wahrscheinlichkeiten zu berechnen, um J + 1 Wahrscheinlichkeiten zu bestimmen, da sie sich insgesamt zu eins addieren müssen. Im Fall von J + 1 = 2 landet man wieder beim Standard logistischen Modell (siehe oben).



Komponenten und Begriffe

Die Güte des Modells

1. Gesamtzahl an Beobachtungen:

Die gesamte Anzahl an Beobachtungen im Datensatz entspricht der Anzahl an Zeilen. Diese wird häufig mit n gekennzeichnet. In diesem Datensatz gibt es insgesamt 100 Beobachtungen.

2. Gelöschte Beobachtungen:

Bei fehlenden Werten in Variablen können Beobachtungen für die Modellanalyse nicht berücksichtigt werden. Im Beispiel sind dies 0 Beobachtungen.

3. Zahl der Beobachtungen:

Hiermit ist die Zahl der Beobachtungen gemeint, die zur Anpassung des Modells genutzt wird. Das bedeutet, dass diese Anzahl sich aus der Differenz der Gesamtzahl an Beobachtungen und den gelöschten Beobachtungen auf Grund von fehlenden Werten in den gewünschten Variablen ergibt. In dem Modell wurden 100 Beobachtungen genutzt.

6. Pseudo R²

Das basiert auf dem Varianzzerlegungssatz, der besagt, dass sich die Varianz der abhängigen Variablen als die Summe eines Varianzteils, der durch das Regressionsmodell erklärt wird und der Varianz der Residuen (nicht erklärte Varianz) schreiben lässt. Das Bestimmtheitsmaß R² ist der Quotient aus erklärter Varianz und Gesamtvarianz. Als Anteilswert kann das R² Werte zwischen 0 und 1 annehmen. Das R² misst aber nur lineare Zusammenhänge, den es beim Logit-Modell jedoch nicht gibt. Die Definition von „Varianz“ ist im binär-logistischen Fall anders. Als Basis dienen hier Vergleiche der Likelihood Funktion L für das Null- und das vollständige Modell. Bekannte "Pseudo R²" sind:

$$\text{McFadden}\quad R^2=1-\frac{L_{null}}{L_{voll}}$$

$$\text{Cox&Snell}\quad R^2=1-\left(\frac{L_{null}}{L_{voll}}\right)^{\frac{2}{n}}$$

$$\text{Nagelkerkes}\quad R^2=\frac{1-\left(\frac{L_{null}}{L_{voll}}\right)^{\frac{2}{n}}}{1-(L_{null})^\frac{2}{n}}$$

Das geschätzte Modell im Beispiel hat ein McFadden R² von 0.5893. Die Interpretation ist anders als im Kontext eines linearen Zusammenhangs. Man kann nun nicht mehr von einem erklärten Anteil sprechen. Vielmehr entziehen sich die Pseudo R² jeglicher inhaltlicher Interpretation. Es gilt jedoch für alle drei vorgestellten Maße folgende Faustregel:

\(R^2>0.2\): Modellanpassung ist akzeptabel

\(R^2>0.4\): Modellanpassung ist gut

\(R^2>0.5\): Modellanpassung ist sehr gut

8. Standardfehler des Schätzers:

Da das Logit Modell nicht analytisch lösbar ist, wird der Schätzer numerisch mittels der Maximum-Likelihood Methode ermittelt. Über diese Art von Schätzern können nur asymptotische Aussagen getroffen werden. So entspricht auch der Standardfehler asymptotisch dem Inversen der Fisher-Information.


Schätzergebnisse

9. Abhängige oder endogene Variable:

Im Beispiel ist das Besitzen eines Autos (car) die abhängige Variable.

10. Erklärende oder exogene Variable:

Im Beispiel ist das Einkommen (income) die erklärende Variable.

11. Geschätzte Parameter:

Bei einer einfachen logistischen Regression gibt es zwei geschätzte Parameter: \( \beta_0\) für den Achsenabschnitt und \( \beta_1\) für die Steigung in den Logits. Die Interpretation im Logit Modell ist schwieriger als im linearen Regressionsmodell. Der Parameter \( \beta_0\) ist nicht sinnvoll interpretierbar. Der "Steigungsparameter" \(\beta_1\) gibt an, wie stark die erklärende Variable (Einkommen) die Wahrscheinlichkeit für das Eintreten des Ereignisses (Besitzen eines Autos) beeinflusst.

Schätzung im Beispiel Auto-Einkommen:

\(\text{ln}\left(\frac{\hat{p}_i}{1-\hat{p}_i}\right) = -34.41888 + .0530702 \cdot income_{i}\)

Interpretation der Parameter:

Der Parameter für die Konstante entspricht -34.41888. Dieser Wert ist nicht sinnvoll zu interpretieren.

Der Steigungsparameter entspricht .0530702. Das bedeutet, dass pro Euro die Chance, ein Auto zu besitzen, um ca. 5.3% steigt.

12. Standardabweichung der Schätzung (Standardfehler, \(\hat{SF_{\beta_j}}\)):

Da die Parameter basierend auf einer Zufallsstichprobe geschätzt werden, unterliegen diese Schätzungen einer gewissen Ungenauigkeit, die durch die Standardabweichung der Schätzung quantifiziert wird. Standardfehler werden genutzt, um statistische Signifikanz zu überprüfen und um Konfidenzintervalle zu bilden.

13. Z-Statistik (empirischer Z-Wert).

Mit Hilfe eines Wald- oder Likelihood-Ratio Tests lässt sich prüfen, ob die Nullhypothese, dass ein Koeffizient gleich 0 ist, abgelehnt werden kann. Wenn dies nicht der Fall sein sollte, ist davon auszugehen, dass die zugehörige Kovariate keinen signifikaten Einfluss auf die abhängige Variable ausübt, d.h. die erklärende Variable ist nicht sinnvoll, um die Eigenschaften der abhängigen Variablen zu erklären.

Hypothese:  \(H: \beta_p=0\) gegen \(A: \beta_p \neq 0\) mit \(p=0,1\)

Teststatistik: \(T_p = \frac{\hat{\beta_p}-0}{\hat{SF_{\beta_p}}}\) mit \(p=0,1\)

Verteilung unter H: \(T_p \sim t_{n-(p+1)}\) mit \(p=0,1\)

Testentscheidung (H ablehnen wenn): \(|T_p| > t_{n-(p+1), 1-\frac{\alpha}{2}}\) mit with \(p=0,1\)

Überprüfung, ob das Nettoeinkommen Einfluss auf das Rauchen hat, anhand der Z-Statistik:

Die Teststatistik vom Parameter für das Nettoeinkommen ist  \(T_p = \frac{0.0530702}{0.0110797} \approx 4.79\). Diese Teststatistik wird mit dem kritischen Wert verglichen:

\(|T_1| = 4.79 > 1.96 = z_{1-\frac{\alpha}{2}}\).

Schon anhand der Teststatistik kann man erkennen, dass die Nullhypothese \(\beta_1=0\) hier abgelehnt werden kann, d.h. dass das Einkommen einen signifikanten Einfluss auf das Besitzen eines Autos hat.

14. p-Wert zur Z-Statistik:

Zusätzlich zur Z-Statisik wird meistens ein p-Wert ausgegeben. Der p-Wert gibt die Wahrscheinlichkeit an, dass die Nullhypothese \(\beta_p=0\) zutrifft.

Überprüfung, ob das Einkommen Einfluss auf das Besitzen eines Autos hat, anhand des p-Wertes:

Im Beispiel liegt der p-Wert zur Nullhypothese \(\beta_1=0\) bei 0.000. Daraus kann man schließen, dass das Einkommen einen signifikanten Einfluss auf das Besitzen eines Autos ausübt, und zwar zu allen gängigen Signifikanzniveaus.

15. 95%-Konfidenzintervall:

Konfidenzintervalle sind im Allgemeinen eine Möglichkeit, die Genauigkeit der Schätzung zu überprüfen. Ein 95%-Konfidenzintervall ist der Bereich, der im Durchschnitt in 95 von 100 Fällen den tatsächlichen Wert des Parameters einschließt.

Konfidenzintervall für den Steigungsparameter in der Beispielregression:                                                                                              

[0.0530702 - 1.96 * 0.0110797; 0.0530702 + 1.96 * 0.0110797] = [0.0313543; 0.074786]



Outputs in den verschiedenen Statistikprogrammen

Hier werden die Outputs aus den verschiedenen Statistikprogrammen vorgestellt. Die Outputs einer logistischen Regression unterscheiden sich teils in den verschiedenen Statistikprogrammen. Sowohl sind die Werte unterschiedlich angeordet, als auch werden teils nicht die gleichen Werte ausgegeben.

Im Folgenden werden die Werte 1-15, wenn vorhanden, an den Output der verschiedenen Statistikprogramme geschrieben, damit die Werte im Output gefunden werden können.

Output in R

Output in Stata

Output in SPSS

Die logistische Regression in SPSS wird durchgeführt über den Pfad Analysieren → Regression → Binär logistisch...

Sie erhalten unter anderem diesen Output:


Output in SAS

Mit der Procedure "Logistic":


Modellannahmen und deren Überprüfung


  • Keine Stichwörter